Корзина
32 отзыва
Новая линейка сетевого оборудования - UPLINK!Подробнее
+38044-3319-044
ООО «Эмбер Украина»
Масла для холодильного оборудования

Масла для холодильного оборудования

06.05.15

В настоящее время в компрессорных системах охлаждения применяются различные виды масел, отличающиеся по составу и по способу изготовления.

   КЛАССИФИКАЦИЯ МАСЕЛ

1. Минеральные масла:

  • нафтеновые;
  • парафиновые.

2. Синтетические масла:

  • алкилбензольные (А);
  • полиалкилгликольные (ПАГ);
  • полиолэфирные (ПОЕ);
  • полиальфаолефиновые (ПАО) и др.

3. Полусинтетические масла:

  • смеси алкилбензольного и минерального масла (А/М).

    Наиболее используемые типы масел:

  Минеральные – являются смешиваемыми (полностью растворимыми) с R12, применяются с хладагентами групп ХФУ, ГХФУ – R13, R22, R500, R502 и т.д.

   Алкилбензольные масла (А) используются в холодильной промышленности более 25 лет, термически стабильны, хорошо смешиваются с хладагентами групп ХФУ, ГХФУ.

   Полиолэфирные масла (ПОЕ) рекомендуются для установок с хладагентами группы ГФУ – R134, R407C, R410A, R404A

 Полиалкилгликольные масла (ПАГ) широко используются в мобильных установках, таких, как автомобильные  кондиционеры с хладагентом R134A.

   Преимущества синтетических масел по сравнению с минеральными:

  • лучше смазывающие качества;
  • выше термическая стабильность и стойкость в смеси с хладагентами;
  • ниже температура застывания;
  • меньше агрессивность по отношению к конструкционным материалам.

   Недостатки:

  • относительно высокая стоимость;
  • значительная гигроскопическая и избирательная агрессивность по отношению к отдельным материалам.

   Полиолэфиры - химические вещества, полученные из спирта и органических кислот.

  Необходимо не путать полиолэфиры с полиэфирами. Последние получены полимеризацией из иных соединений и используются в основном в производстве волокон.

   НЕКОТОРЫЕ СВОЙСТВА ХОЛОДИЛЬНЫХ МАСЕЛ

   Вязкость

  Согласно градации международного стандарта ISO3448, масла характеризуются кинематической вязкостью ν при 40 °С, имея размерность сСт (мм2/с) – сантистокс.

   Вязкость характеризует жёсткость связи молекул между собой, то есть степень сопротивления данного вещества.

    От вязкости, в значительной мере, зависит смазывающая способность рассматриваемого вещества.

Диапазон значений вязкости для некоторых условий работы

Компрессоры Область температур Вязкость (при 40 ºС), сСт
герметичные малой производительности   10-40
винтовые   > 100
  умеренная не < 50
центробежные   40-70
поршневые   15-68
  кондиционеры 60-80
  тепловые насосы 60-100
быстроходные компрессоры   не < 6-7 (при 100 ºС)
  для напряженных условий работы 8-10 (при 100 ºС)

   В США вязкость масла измеряется при 37,8 ºС (100 °F) другим методом, и результаты выражаются в универсальных секундах Сейболта (SUS или SSU).

  Для наиболее часто встречающихся значений вязкости приблизительные преобразования выглядят следующим образом:

  • 150 SUS 32 мм2/с
  • 300 SUS 68 мм2/с
  • 450 SUS 100 мм2/с

   При слишком высокой вязкости возрастают потери на трение, при слишком низкой – возможен разрыв масляной пленки между сопрягаемыми деталями, что приводит к повышенному их износу.

   С повышением температуры вязкость масла уменьшается, в верхней части цилиндра и поршня износ происходит более интенсивно.

    Вязкость синтетических масел менее чувствительна к изменению температуры, чем минеральных масел.

    Повышение вязкости масел приводит к ухудшению растворимости в них хладагентов, ухудшая тем самым циркуляцию хладагентов в холодильных системах.

   Индекс вязкости

  Индекс вязкости (ИВ) является относительной величиной, характеризующей зависимость ν= f(t) и определяемой по формуле:

ИВ = (L– ν)*100/(L– H), где

L – вязкость стандартного масла с ИВ=0 при температуре 37,8 ºС;

ν – кинематическая вязкость исследуемого масла при температуре 37,8 ºС;

Н – вязкость стандартного масла с ИВ=100 при температуре 37,8 ºС.

   Для обеспечения достаточной вязкости при высоких рабочих температурах в компрессоре целесообразно применение масла с высоким индексом вязкости.

   Плотность

  Плотность минеральных масел зависит от их фрикционного состава и возрастает с увеличением содержания ароматических углеводородов.

   С повышением температуры плотность масел снижается.

   Температуры застывания и текучести

   Температура застывания определяет начало застывания, то есть перехода масла из жидкого состояния в твёрдое.

   При выборе масла необходимо следить, чтобы температура застывания и температура текучести масла была ниже температуры кипения хладагента.

  У минеральных масел начало застывания зависит всегда от избыточного количества свободного парафина, который кристаллизуется первым.

  Синтетические масла кристаллизуются обычно при более высоких температурах. Не рекомендуется смешивать между собой полиолэфирные  масла без предварительных тестов, потому, что некоторые полиолэфиры в смеси демонстрируют аномалии кристаллизации. Эти негативные явления были выявлены в процессе тестов.

   Поэтому, перед смешиванием полиолэфирных масел следует сделать соответствующий запрос на фирму поставщика масел о возможном последствии.

   Температура помутнения

   Температура, при которой начинается кристаллизация парафинов, называется температурой выпадения парафинов, или температурой помутнения.

   В международной практике и в России используется также термин «выпадение хлопьев».

  Температура выпадения хлопьев должна быть ниже температуры кипения в испарителе. В целях ее понижения масла подвергают депарафинизации.

   Кислотность

  Кислотность определяется кислотным числом – количеством миллиграммов КОН на 1 г масла (в иностранной литературе используется термин «число нейтрализации»).

   Кислотное число высококачественных холодильных масел не превышает 0,03…0,05 КОН на 1 г масла.

   Характер среды (кислый или щелочной) синтетических жидкостей иногда характеризуют концентрацией ионов водорода рН. Нейтральная среда характеризуется рН=6,5…7.

   Высокое значение кислотного числа указывает на перегрев или окисление масла.

   Содержание воды и гигроскопичность масла

 Гигроскопичность характеризуется относительной величиной предельной растворимости воды (концентрацией)

 при определенной температуре. Она выражается в мг/кг или ppm.

   Растворимость воды увеличивается с повышением температуры и зависит от типа масла.

   В синтетических маслах она значительно выше, чем в минеральных и углеводородных.

   Поверхностное натяжение

 Поверхностное натяжение масел влияет на их противозадирные качества, прочность пленки и вспениваемость в смеси с хладагентом.

   С повышением температуры поверхностное натяжение масел снижается; с увеличением поверхностного натяжения вязкость минеральных масел повышается.

   Вид и цвет

   Цвет масла определяется в марках NPA по шкале Осфальда или в марках ЦНТ .

   При работе холодильной машины масла постепенно темнеют вследствие окисления. Черный цвет масла, как правило, свидетельствует о перегорании обмотки электродвигателя.

  Обычно предельно допустимый цвет минеральных и углеводородных масел, предназначенных для использования в холодильных машинах, работающих на R12, R22, R502, - 4…4,5 марки.

   Вспениваемость

   Вспениваемость холодильных масел зависит от растворимости хладагента в масле.

  Образование пены в масляных ваннах холодильных компрессоров происходит вследствие вскипания смеси из-за быстрого падения давления в картере.

   С уменьшением вязкости масла и повышением его температуры пенообразование снижается.

   Химическая стабильность

   К химической стабильности масел предъявляют жесткие требования.

   Особое внимание уделяют сухости системы, поскольку влага даже в незначительных количествах быстро выводит химическое качество среды за пределы допустимого.

  Одной из причин химической нестабильности масла является присутствие в холодильном контуре остатков кислорода из-за низкого уровня вакуумирования системы перед заправкой хладагентом.

 Экспериментально доказано, что вероятность сгорания обмоток электродвигателя возрастает с повышением кислотности масла.

   Смешиваемость и растворимость

  Под смешиваемостью понимают образование однородной среды из масла и хладагента, а под растворимостью – насыщение масла хладагентом в паровой фазе.

  Если смешиваемость зависит от природы хладагента, типа масла, его вязкости, температуры, то растворимость зависит, кроме перечисленных факторов, еще и от давления.

  Растворимость хладагентов в масле и частичная смешиваемость с хладагентами определяется так называемой кривой растворимости. Эта кривая составляется из статистических данных, которые не всегда соответствуют состоянию холодильной системы после её работы.

   У классических холодильных масел на углеводородной базе, как минеральных так и синтетических, в смесях с фреонами данные этой кривой и после работы оборудования соответствовали действительному состоянию смеси в системе. Поэтому кривая растворимости была важна при выборе подходящего масла.

  Новый высокополярный хладагент ведёт себя различно в смесях с нерастворяемыми маслами и, поэтому, для смесей этих хладагентов с маслами важность кривых растворимости снизилось.

  При движении смеси масла и холодильного агента по холодильной системе возникает дисперсия и, например, температура застывания смеси по сравнению с температурой застывания чистого масла снижается.

  Поэтому, практически, при ретрофите, добавка (20-30)% углеводородных масел к полиолэфирным маслам не создаёт проблем в работе холодильных систем. С помощью специальных присадок, влияющих на склонность углеводородных масел к дисперсии, удалось на их базе получить масла для высокополярных холодильных агентов.

  На практике возникает необходимость работы на смесях масел. Смешиваемые масла должны быть совместимы друг с другом и не нарушать работу компрессора и холодильной машины из-за появления осадков, отложений и агрессивных веществ.

  Обычно смешивание минеральных масел не приводит к отрицательным последствиям. Однако при недостаточной термической и химической стабильности одного из масел работа на смеси не рекомендуется.

   Так, масло ХФ 22-24, которое само по себе не рекомендуется применять при температурах нагнетания выше 100°С, недопустимо смешивать с высококачественными минеральными и синтетическими маслами.

  Некоторые синтетические масла также образуют нестабильные смеси с минеральными и другими синтетическими маслами. Несовместимыми являются, например, масла ХФ 22с-16 и ХФ 22-24, ПФГОС 4 и ХС 40.

Некоторые типы масел для поршневых компрессоров, работающих на (H)CFC хладонах или NH3 (по данным фирмы Bitzer)

Поставщик Марка масла Тип масла Вязкость (40 С),сСт Область применения
Хладоны NH3
BITZER B 5.2 MO/AB 39 HML  
SHELL & DEA OIL Clavus G 68 MO 65   HM
ADDINOL XK30 AB 30 HML  
XKS46 AB 46 HML  
XKS68 AB 64 HML  
AGIP TER32 MO 30 HM (L)  
TER46 MO 44 HM  
TER60 MO 59 HM HM
ARAL Alur EE32 MO 32 HM (L)  
Alur EE46 MO 46 HM  
Alur EE68 MO 68 HM  
BP Energol LPTF32 MO 32 HM (L)  
Energol LPTF46 MO 46 HM HM
BURMAN/CASTROL Icematic 266 MO 30 HM (L)  
Icematic 299 MO 57 HM  
Icematic 2284 AB 64 HML  
ESSO Zerice S46 AB 48 HML  
Zerice S68 AB 64 HML  
Zerice R46 MO/AB 50 HM (L)  
Zerice R68 MO 68 HM  
FUCHS EUROPE Reniso SP32 AB 32 HML  
Reniso SP46 AB 47 HML  
Reniso SP68 AB 68 HML  
Reniso Triton MS32 MO/AB 30 HM (L)  
Reniso Triton MS46 MO/AB 43 HM  
Reniso Triton MS68 MO/AB 63 HM  
Reniso KM32 MO 32 HM (L)  
Reniso KS46 MO 47 HM  
Reniso KC68 MO 68 HM HM
MOBIL Artic C heavy MO 44 HM  
Artic Oil 300 MO 60 HM HM
Artic SHC 426 AB 65 HML  
PETRO-CANADA Reflo 68A MO (HT) 58   HM
PETROSYNTESE Zerol 150 AB 30 HML  
Zerol 300 AB 53 HML  
SHELL & DEA OIL Clavus SD2212 MO/AB 39 HML  
Clavus G32 MO 30 HM (L)  
Clavus G46 MO 44 HM (L)  
Clavus G68 MO 65 HM HM
Clavus 68 MO 65   HM
SUN OIL Suniso 3GS MO 30 HM (L)  
Suniso HT25 MO 43 HM (L)  
Suniso 4GS MO 57 HM H (M)
TEXACO/CALTEX Refrig. Oil Low Temp.32 MO/AB 30 HM (L)  
Refrig. Oil Low Temp.46 MO/AB 43 HM  
Refrig. Oil Low Temp.68 MO/AB 63 HM  
Capella Oil WF 32 MO 30 HM (L)  
Capella Oil WF 46 MO 46 HM  
Capella Oil WF 68 MO 68 HM HM
TOTAL Lunaria 32 MO 32 HM  
Lunaria 46 MO 46 HM  
Lunaria FR 32 MO 30 HM (L)  
Lunaria FR 46 MO 43 HM (L)  
Lunaria FR 68 MO 68 HM (L)  
Friga 2 MO 58 HM HM
Lunaria SK 55 AB 50 HML  
WINTERSHALL Wiolan KFL MO 32 HM (L)  
  Wiolan KFM MO 46 HM  
  Wiolan KFO MO 68 HM HM

МО/АВ - смесь алкилбензольного и минерального (МО + АВ)

Н - кондиционирование

М - средние температуры

L - низкие температуры

(L) - низкие температуры, за исключением полугерметичных компрессоров, работающих с высокой температурой конденсации

   Некоторые типы масел, рекомендуемые для поршневых полугерметичных компрессоров:

Хладагент Тип масла Вязкость (40 С), сСт Марка масла
HFC
(R134a - R404A - R407C - R507)
POE
(полиолэфирное)
46 Mobil EAL Artic 46
ICI Emcarate RL 46 S
Castrol Icematic SW 46
Suniso SL 46
DEA SEZ 46

Примечание. Не допускается смешивание минерального и синтетического масел

Выбрать масло для холодильного оборудования (холодильное масло) > >

Предыдущие новости
Производитель
Рекомендуем!